
Constrained Delaunay Tetrahedralizations and
Provably Good Boundary Recovery

Jonathan Richard Shewchuk

University of California at Berkeley, Berkeley, CA, U.S.A. jrs@cs.berkeley.edu

Abstract

In two dimensions, aconstrained Delaunay triangulation (CDT) respects a set of segments that constrain the edges of the triangula-
tion, while still maintaining most of thefavorable properties of ordinary Delaunay triangulations (such as maximizing the minimum
angle). CDTs solve the problem of enforcingboundary conformity—ensuring that triangulation edges cover the boundaries (both
interior and exterior) of the domain being modeled. This paper discusses the three-dimensional analogue,constrained Delaunay
tetrahedralizations (also called CDTs), and their advantages in mesh generation. CDTs maintain most of thefavorable properties
of ordinary Delaunay tetrahedralizations, but they are more difficult to work with, because some sets of constraining segments
and facets simply do not have CDTs. However, boundary conformity can always be enforced by judicious insertion of additional
vertices, combined with CDTs. This approach has three advantages over other methods for boundary recovery: it usually requires
fewer additional vertices to be inserted, it yields provably good bounds on edge lengths (i.e. edges are not made unnecessarily
short), and it interacts well with provably good Delaunay refinement methods for tetrahedral mesh generation.

Keywords: finite element mesh generation, tetrahedral mesh generation, constrained Delaunay tetrahedralization, bound-
ary conformity, boundary recovery

1 Introduction

Delaunay tetrahedra have desirable properties that make
them popular for finite element meshes. These proper-
ties include their tendency tofavor “round” tetrahedra over
“skinny” (high aspect ratio) tetrahedra, their suitability for
interpolation [25, 24], and their mathematical properties that
allow Delaunay refinement algorithms [6, 8, 14, 21, 22] to
generate meshes that have provably good properties.

However, Delaunay tetrahedralizations are convex. The
domains modeled with finite element methods usually are
not. Domains have boundaries that must be respected by
the mesh, including both exterior boundaries that bound
the mesh, and interior boundaries used to separate regions
having different material properties (e.g. the interface be-
tween two metals in a heat conduction problem), to represent
known discontinuities in the solution, or to establish vertices,

Supported in part by the National Science Foundation under Awards
ACI-9875170, CMS-9980063, and EIA-9802069, and in part by a
gift from the Okawa Foundation. The views and conclusions in this
document are those of the author. They are not endorsed by, and do
not necessarily reflect the position or policies of, the Okawa Foun-
dation or the U. S. Government.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 1: It is difficult to mesh the interior of this box
with Delaunay tetrahedra that conform to all the facets.

edges, and faces of the mesh where boundary conditions may
be applied effectively.

The problem is most difficult for domains where boundaries
are separated by small dihedral angles, as in Figure 1. Ver-
tices inserted to recover one boundary—so that it is rep-
resented as a union of triangular faces of the Delaunay
tetrahedralization—are likely to knock faces of the adjacent

boundaries out of the Delaunay tetrahedralization.

There are three established approaches to this problem.
One is theconforming Delaunay approach, in which addi-
tional vertices are inserted into the mesh—while the Delau-
nay property of the tetrahedralization is maintained—until
it conforms to the boundaries, meaning that each boundary
is represented by a union of triangular faces of the mesh.
The question ofwhere to insert additional vertices to ob-
tain boundary conformity is difficult. Murphy, Mount, and
Gable [16] and Cohen-Steiner, de Verdi`ere, and Yvinec [4]
offer algorithms that work even with difficult examples like
the box in Figure 1. However, their tetrahedralizations may
have very short edges, which engender very small tetrahe-
dra, and the numbers of extra vertices can be large. These
algorithms might not even produce meshes whose complex-
ity is polynomial in the complexity of the description of the
input domain. (The approach described in this paper does
not have polynomial bounds either, but it does reduce the
number of extra vertices.) And nobody knows how to rec-
oncile the need for good-quality elements with the need for
boundary conformity in a purely Delaunay mesh.

The second approach, and the most common one in the en-
gineering literature [11, 12, 29], might be called thealmost
Delaunay approach. Missing domain boundaries are recov-
ered by inserting additional vertices where the boundaries in-
tersect the faces or edges of the tetrahedralization. However,
the Delaunay property is not maintained during these ver-
tex insertions (at least not fully), so vertex insertions do not
knock recovered boundaries out of the mesh. The tetrahe-
dra are subdivided in ways that introduce new vertices with-
out eliminating existing faces and edges that represent do-
main boundaries. Once all the boundaries are recovered, a
mesh generator might attempt to regain the Delaunay prop-
erty of the mesh by using topological flips, but because the
flips are not permitted to disturb the domain boundaries, the
mesh is usually not entirely Delaunay. The deviations occur
at the boundaries—where obtaining high-quality elements is
most difficult. One consequence is that provably good De-
launay refinement procedures cannot be guaranteed to work
correctly. “Almost Delaunay” mesh generation programs do
work well in many circumstances, but they are unlikely to be
able to control the quality of the elements in circumstances
like Figure 1. Furthermore, they are also in danger of cre-
ating very short edges, or inserting many more vertices than
necessary, unless they are carefully designed.

The third approach usesconstrained Delaunay tetrahedral-
izations (CDTs). CDTs are composed entirely ofcon-
strained Delaunay tetrahedra, which are not always Delau-
nay, but nevertheless retain two of thefavorable properties
of Delaunay tetrahedra: they help to control interpolation er-
ror [24], and they help to prove that Delaunay refinement
algorithms reliably generate good meshes [22]. CDTs have
the advantage of requiring fewer vertices than conforming
Delaunay tetrahedralizations, and as this paper will show, it
is straightforward to form CDTs without creating unneces-
sarily short edges.

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������

Constrained Delaunay

Conforming Delaunay / Almost Delaunay

Figure 2: Two different methods for recovering a two-
dimensional interior boundary inside a cubical domain.
The initial Delaunay tetrahedralization does not respect
the rectangular boundary. (For clarity, the tetrahedra
are not shown.) Both approaches insert additional ver-
tices to recover the missing domain edges. Next, the
standard approaches insert more vertices to recover
missing facets (top), but no additional vertices are
needed if constrained Delaunay tetrahedra are used
(bottom).

It takes some care to construct a CDT that conforms to a
domain. This paper details the following approach. First,
form the Delaunay tetrahedralization of the vertices of the
domain. This tetrahedralization covers the entire convex hull
of the domain, and probably does not respect all the do-
main boundaries. Second, identify the domain edges and
determine which of them fail to appear in the tetrahedral-
ization (see Section 4). Third, insert additional vertices into
the tetrahedralization (while maintaining the Delaunay prop-
erty), with the aim of recovering the missing domain edges.
An algorithm for placing these vertices is given in Section 5.

So far, the approach is identical to the construction of a con-
forming Delaunay tetrahedralization, and to some of the “al-
most Delaunay” approaches as well. The approaches part
ways completely when all the domain edges have been re-
covered, and it is time to recover the missing domain faces.
Figure 2 illustrates the difference. The standard approaches
insert more vertices to recover the missing faces. The ap-
proach expounded here simply replaces the Delaunay tetra-
hedra with constrained Delaunay tetrahedra, thereby recov-
ering the missing faces without inserting another vertex. Al-
gorithms for constructing CDTs are discussed in Sections 6
and 7.

This technique may yield a large, even asymptotic, savings in
the number of vertices required to obtain domain conformity.
Three-dimensional CDTs also make it possible for Delaunay
refinement algorithms to mesh any PLC, even for domains
with small angles [22], and to establish provable bounds on
the lengths of the edges and shapes of the tetrahedra they
produce.

Figure 3: The Delaunay triangulation (upper right) of
the vertices of a PSLG (upper left) might not respect
the segments of the PSLG. These segments can be
incorporated by adding vertices to obtain a conform-
ing Delaunay triangulation (lower left), or by forgoing
Delaunay triangles in favor of constrained Delaunay tri-
angles (lower right).

2 Definitions: PLCs and CDTs

The phrase “constrained Delaunay triangulation” appears of-
ten in the meshing literature, but there appears to be little
agreement on exactly what it means, especially in three di-
mensions. In contrast, “constrained Delaunay” and “con-
forming Delaunay” are rigorously defined in the computa-
tional geometry literature; this section explains those defini-
tions. My apologies in advance to anyone who wishes “con-
strained Delaunay triangulation” to mean something else.

I illustrate with two-dimensional examples first. Both con-
forming and constrained Delaunay triangulations are defined
on the assumption that the input is aplanar straight line
graph (PSLG)X, which is a set of vertices andsegments
(constraining edges) illustrated in Figure 3 (upper left). A
triangulation is sought that contains the vertices ofX and
respects the segments ofX.

In a conforming Delaunay triangulation (Figure 3, lower
left), every simplex (triangle, edge, or vertex) isDelaunay.
A simplex is Delaunay if there exists acircumcircle of the
simplex—a circle that passes through all its vertices—that
encloses no vertex (although any number of vertices is per-
mitted on the circle). The vertices ofX are augmented by
additional vertices (sometimes calledSteiner points) care-
fully chosen so that the Delaunay triangulation of the aug-
mented vertex setrespects all the segments—in other words,
so that each segment is the union of a contiguous linear
sequence of edges of the triangulation. Edelsbrunner and
Tan [10] show that any PSLG can be triangulated with the
addition ofO(m2n) augmenting vertices, wherem is the

e
t

Figure 4: The edge e and the triangle t are each con-
strained Delaunay. Bold lines represent segments.

number of segments inX, and n is the number of ver-
tices. Few PSLGs require this many augmenting vertices,
but PSLGs are known for whichΘ(mn) augmenting ver-
tices are needed. Closing the gap between theO(m2n) and
Ω(mn) bounds remains an open problem.

A constrained Delaunay triangulation (CDT) [13, 2] of X
has no vertices not inX, and every segment ofX is a single
edge of the CDT (Figure 3, lower right). However, a CDT,
despite its name, is not a Delaunay triangulation, because
the simplices are not required to be Delaunay. Instead, every
simplex must either be a segment specified inX or becon-
strained Delaunay. A simplex is constrained Delaunay if it
has a circumcircle that encloses no vertex ofX that isvisi-
ble from any point in the relative interior of the simplex; and
furthermore, the relative interior of the simplex does not in-
tersect any segment. Visibility is occluded only by segments
of X.

Figure 4 demonstrates examples of a constrained Delaunay
edgee and a constrained Delaunay trianglet. Segments in
X appear as bold lines. Although there is no empty circle
that enclosese, the depicted circumcircle ofe encloses no
vertex that is visible from the relative interior ofe. There
are two vertices inside the circle, but both are hidden behind
segments. Hence,e is constrained Delaunay. Similarly, the
circumcircle oft encloses two vertices, but both are hidden
from the interior oft by segments, sot is constrained Delau-
nay.

The advantage of a CDT over a conforming Delaunay trian-
gulation is that it has no vertices other than those inX. The
disadvantage is that its triangles are not Delaunay. However,
a CDT retains many of the desirable properties of Delaunay
triangulations. For instance, a two-dimensional CDT max-
imizes the minimum angle in the triangulation, compared
with all other constrained triangulations ofX [13].

CDTs generalize to three or more dimensions [20], but
whereas every PSLG has a CDT, not every polyhedron has
one. One of the reasons why three-dimensional bound-
ary recovery is difficult is that there are polyhedra that
cannot be tetrahedralized at all without additional vertices.
Schönhardt [18] furnishes a three-dimensional example de-
picted in Figure 5 (right). The easiest way to envision this
polyhedron is to begin with a triangular prism. Imagine
grasping the prism so that one of its two triangular faces
cannot move, while the opposite triangular face is rotated

Figure 5: Schönhardt’s untetrahedralizable polyhe-
dron (right) is formed by rotating one end of a trian-
gular prism (left), thereby creating three diagonal reflex
edges.

Figure 6: Each facet of a PLC (left) may have holes,
slits, and interior vertices, which may be used to en-
force the presence of specific faces (perhaps so that
boundary conditions may be applied) or to support in-
tersections with other facets. The right illustration is the
constrained Delaunay tetrahedralization of the PLC.

slightly about its center without moving out of its plane. As
a result, each of the three square faces is broken along a diag-
onal reflex edge (an edge at which the polyhedron is locally
nonconvex) into two triangular faces. After this transforma-
tion, the upper left corner and lower right corner of each (for-
merly) square face are separated by a reflex edge and are no
longer visible to each other within the polyhedron. Any four
vertices of the polyhedron include two separated by a reflex
edge; thus, any tetrahedron whose vertices are vertices of
the polyhedron will not lie entirely within the polyhedron.
Therefore, Sch¨onhardt’s polyhedron cannot be tetrahedral-
ized without an additional vertex. (One extra vertex in the
center will do.)

Realistic three-dimensional domains are often more compli-
cated than polyhedra, so consider a more general input called
apiecewise linear complex (PLC), following Miller, Talmor,
Teng, Walkington, and Wang [15].1 A PLCX is a set of ver-
tices, segments, andfacets, as illustrated in Figure 6. Each
facet is a polygon (roughly speaking), possibly with holes,
slits, and isolated vertices in it. As the figure shows, a facet
may have any number of sides and may be nonconvex. Just
as a segment imposes a one-dimensional constraint on a tri-
angulation, a facet imposes a two-dimensional constraint:
for a tetrahedralizationT to be a CDT ofX, each facet of
X must be a union of triangular faces ofT .

PLCs have restrictions like those of any other type of com-
plex. If X contains a facetf , thenX must contain every

1Miller et al. call it apiecewise linear system, but their construc-
tion is so obviously a complex that a change in name seems obliga-
tory.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

p q

n

m

f

Figure 7: In this example, the facet f occludes the
visibility between p and q. However, m and n can see
each other. Their view is not blocked by f , because m
and n lie in the same plane as f ; nor is it blocked by
any boundary segment of f , because segments do not
affect visibility.

segment and vertex off . A segment and a facet may inter-
sect only at a shared vertex, unless the segment lies in the
boundary of the facet. Any two facets of a PLC may inter-
sect only at a shared segment or vertex, or a union of shared
segments and vertices. (Because facets are nonconvex, two
facets may intersect in several places.)

Thetriangulation domain is the region of space a user wishes
to tetrahedralize. We could choose the convex hull by de-
fault, but sometimes it pays to be more specific, because
there are PLCs for which a CDT of the triangulation domain
exists but a CDT of its convex hull does not. For exam-
ple, it is easy to tetrahedralize the domain sandwiched be-
tween Sch¨onhardt’s polyhedron and the boundary of its con-
vex hull, even though the interior of the polyhedron is not
tetrahedralizable.

The triangulation domain is required to befacet-bounded,
meaning that facets ofX entirely cover the boundary that
separates the triangulation domain from its complement, the
exterior domain. The exterior domain includes any hollow
cavities enclosed by the triangulation domain, as well as
outer space. Some facets, known asinterior facets, may have
the triangulation domain on both sides. Such facets allow
PLCs to represent non-manifold and multiple-component
domains—for instance, by serving as interfaces between two
different materials.

To define what a CDT is in three dimensions, more defini-
tions are needed. Say that the visibility between two points
p andq is occluded if there is a constraining facetf of X
such thatp andq lie on opposite sides of the plane that in-
cludesf , and the line segmentpq intersectsf . If eitherp or
q lies in the plane that includesf , thenf does not occlude
the visibility between them. See Figure 7. Segments inX
do not occlude visibility. The pointsp andq arevisible from
each other (equivalently, cansee each other) if there is no
occluding facet ofX.

Let s be any simplex (tetrahedron, triangle, edge, or vertex)
whose vertices are inX (buts is not necessarily inX). LetS
be a sphere;S is acircumsphere of s if S passes through all
the vertices ofs. If s is a tetrahedron, thens has a unique cir-
cumsphere; otherwise,s has infinitely many circumspheres.

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������f

t v

Figure 8: A constrained Delaunay tetrahedron t.

The simplexs is Delaunay if there is a circumsphereS of s
that encloses no vertex ofX (although any number of ver-
tices is permitted on the sphere itself). The simplexs is
strongly Delaunay if there is a circumsphereS of s such that
no vertex ofX lies insideor on S, except the vertices ofs.
Every vertex is strongly Delaunay.

One reason for the distinction between Delaunay and
strongly Delaunay simplices is because if a vertex set has five
or more vertices that lie on a common empty sphere, the ver-
tex set has more than one (unconstrained) Delaunay tetrahe-
dralization. Every Delaunay simplex appears in at least one
of those tetrahedralizations, but a strongly Delaunay simplex
appears inevery Delaunay tetrahedralization.

Loosely speaking, the simplexs respects X if no segment is
cut in two bys, ands does not penetrate from one side of a
facet to the other. Formally,s respectsX if s lies in the tri-
angulation domainand the intersection ofs and any segment
or facet ofX is a union of faces ofs. This union may be the
empty set,s itself, or the melding of several faces ofs, pos-
sibly of mixed dimension. For example, a nonconvex facet
might intersect two or even three edges of a triangle without
including the triangle’s interior.

The simplexs is constrained Delaunay if

• s respectsX,2 and
• there is a circumsphereS of s such that no vertex ofX

insideS is visible from any point in the relative interior
of s.

Figure 8 depicts a constrained Delaunay tetrahedront. The
intersection oft with the facetf is a face oft, sot respects
X. The circumsphere oft encloses one vertexv, butv is not
visible from any point in the interior oft (even thoughv is
visible from some points on the boundary oft).

A tetrahedralizationT is aconstrained tetrahedralization of
X if T andX have the same vertices (no more, no less), the
tetrahedra inT respectX, and the tetrahedra inT entirely
cover the triangulation domain. This definition implies that
each facet inX is a union of triangular faces ofT .

A constrained Delaunay tetrahedralization of X is a con-

2This definition of “constrained Delaunay” differs slightly from
the definition I have used in previous publications [20, 23]. The
present definition is more sound.

Figure 9: Left: A PLC with no CDT. Center: The
sole constrained tetrahedralization of this PLC. Its three
tetrahedra are not constrained Delaunay. Right: The
two Delaunay tetrahedra do not respect the central seg-
ment.

strained tetrahedralization ofX in which each tetrahedron is
constrained Delaunay.

The difficulty of incorporating segments is the main impedi-
ment to the existence of CDTs. Figure 9 offers an example of
a PLC with no CDT. There is one segment that runs through
the interior of the PLC’s convex hull. There is only one con-
strained tetrahedralization of this PLC—composed of three
tetrahedra bordering the central segment—and its tetrahedra
are not constrained Delaunay, because each of them has a
vertex inside its circumsphere. If the central segment is re-
moved, the PLC has a CDT made up of two tetrahedra.

By convention, to say thatT is the CDT of X is to say that
T has no vertices other than those inX. However, Delau-
nay mesh generators insert additional vertices to improve the
quality of the elements. Moreover, although a given PLCX
might not have a CDT, additional vertices can be inserted
into X to yield a new PLCY that does have a CDTT . (Sec-
tion 5 explains how to choose the extra vertices.)T is not
a CDT of X, because it has vertices thatX lacks, butT is
what I call aconforming constrained Delaunay tetrahedral-
ization (CCDT) ofX: “conforming” because additional ver-
tices are permitted, and “constrained” because its tetrahedra
(and faces and edges) are all constrained Delaunay.

One advantage of a CCDT over a conforming Delaunay
tetrahedralization ofX is that the number of additional ver-
tices inserted is generally smaller. The remainder of this pa-
per describes how to construct a CCDT ofX.

3 Edge Protection

The theorem that makes three-dimensional CDTs useful
states that there is a simple condition that guarantees the ex-
istence of a CDT. A PLCX is edge-protected if every seg-
ment inX is strongly Delaunay.

Theorem 1 ([20]) If X is edge-protected, then X has a
CDT. �

It is not sufficient for every segment to be Delaunay. If
Schönhardt’s polyhedron is specified so that all six of its
vertices lie on a common sphere, then all of its edges (and

���������������
���������������
���������������

���������������
���������������
���������������

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

q

p

s

Figure 10: Example of a grazeable segment s. Note
that p cannot see q, but if q is perturbed by an infinitesi-
mal amount, then p and q can see each other. There is
a line of sight that grazes s, hence the term grazeable.

its faces as well) are Delaunay, but it still does not have a
tetrahedralization. It is not possible to place the vertices of
Schönhardt’s polyhedron so that all three of its reflex edges
are strongly Delaunay (though any two may be).

Although the boundary segments of a facet must be strongly
Delaunay for the guarantee to hold, no such restriction ap-
plies to the edges introduced into the facet by meshing.
For example, consider finding a tetrahedralization of a cube.
Each square face must be partitioned by a diagonal edge to
yield a triangulation. The diagonals are not strongly Delau-
nay, and if they were segments in the PLC, a constrained
tetrahedralization might not exist (depending on the choice
of diagonals). If the diagonals are not elements of the PLC,
the existence of a CDT is guaranteed by Theorem 1, and a
CDT construction algorithm can choose a compatible set of
diagonals.

Next, a stronger and even more useful version of Theorem 1.
A PLC segment often serves as a boundary to several facets,
which can be ordered as they appear in rotary order around
the segment. A segment isgrazeable if two consecutive
facets in the rotary order are separated by an interior angle of
180◦ or more (as Figure 10 shows), or if the segment is in-
cluded in fewer than two facets. (Aninterior angle subtends
the interior of the triangulation domain. Exterior angles of
180◦ or more are not an impediment to a CDT.) Only the
grazeable segments need to be strongly Delaunay to guar-
antee a CDT. A three-dimensional PLCX is weakly edge-
protected if each grazeable segment inX is strongly Delau-
nay. If X is weakly edge-protected, thenX has a CDT.

Segments that are not grazeable occur commonly in prac-
tice. For instance, in a regular complex of cubical cells, no
segment is grazeable. The stronger result excludes the non-
grazeable segments from the need to be strongly Delaunay.

But what if X is not weakly edge-protected, and does not
have a CDT? Any PLC can be made edge-protected (weakly
or fully) by the insertion of additional vertices that split the
segments into smaller segments, as described in Section 5.

4 Testing Edge Protection

Testing whether a PLCX is edge-protected is straightfor-
ward. Form the Delaunay tetrahedralizationT of the vertices

of X using any standard algorithm [1, 3, 28].T covers the
entire convex hull ofX. If a segments is missing fromT ,
thens is not strongly Delaunay.

If s is an edge ofT , thens is Delaunay but might not be
strongly Delaunay. The recommended solution is to use
the symbolic perturbation technique discussed in Section 9
while constructing the Delaunay tetrahedralization. The per-
turbations ensure that every edge (and triangle and tetrahe-
dron) that is Delaunay is also strongly Delaunay. Then, ifs
is an edge ofT , s is strongly Delaunay.

If the perturbation technique is not used, there is a test that
checks whether a Delaunay edges is strongly Delaunay by
examining only the tetrahedra ofT that haves for an edge.
Details are omitted because the perturbation technique has
many advantages.

5 Provably Good Edge Protection

Given a set of vertices and segments in three-dimensional
space, where should additional vertices be inserted (split-
ting segments into smaller segments) to ensure that all of the
segments are strongly Delaunay, so that all the segments are
guaranteed to appear in a Delaunay tetrahedralization?

This problem is either easy or difficult, depending on what
constraints you set on the new vertices. If you ask that the
number of added vertices be polynomial in the number of
input vertices and segments, the problem is unsolved (even
though the problem is easier than constructing a conform-
ing Delaunay tetrahedralization, because there is no need to
recover facets). Edelsbrunner and Tan’sO(m2n)-vertex so-
lution for the two-dimensional case [10] has not been gener-
alized to three dimensions, and even it is rather complicated.

However, mesh generation has different needs. The PLCs
that require the most additional vertices have segments
spaced very closely together or meeting at small angles.
However, high-quality meshes of such PLCs might need a
superpolynomial number of vertices anyway. For example,
two parallel segments that are 10,000 units long and spaced
one unit apart will require perhaps 20,000 tetrahedra to mesh
if the tetrahedra are required to have good aspect ratios.

A more meaningful goal for provably good boundary recov-
ery is to ensure that no two vertices are spaced much more
closely together (say, by a small constant factor) than nec-
essary to form a high-quality tetrahedral mesh of the do-
main. Provably good Delaunay refinement algorithms cre-
ate meshes in which each edge’s length is proportional to the
local feature size at that edge. A boundary recovery algo-
rithm should do the same. If smaller tetrahedra are needed
for accuracy, they can easily be refined later; but if boundary
recovery creates too-small tetrahedra, it might not be possi-
ble to fix them.

For a fixed PLCX, the local feature sizelfs(p) of any point
p in space is the radius of the smallest ball centered atp that
intersects two segments or vertices inX that do not intersect
each other. Delaunay refinement algorithms typically bound

the sizes of the elements they create in terms of this or a sim-
ilar definition oflfs [17, 21]. lfs is a continuous function that
is positive everywhere and suggests a rough upper bound on
how large high-quality elements can be. It can vary widely
over the domain, reflecting the impact of domain geometry
on element size. The functionlfs is defined in terms of the
input PLC and does not change as new vertices are inserted.

Observe that this definition of local feature size does not take
facets into account. This is good; it means that facets have no
effect on the edge lengths in the final triangulation (though
the segments that bound each facet do). Perhaps later, small
distances between facets and vertices may force a Delaunay
refinement algorithm to create much smaller edges (to elimi-
nate poor-quality elements), but it will not be the fault of the
boundary recovery algorithm.

The edge protection algorithm proceeds in two steps, illus-
trated in Figure 11. The first step uses protecting spheres
centered at input vertices to choose locations to insert new
vertices. LetV be the set of vertices inX where at least two
segments meet at an angle less than90◦. Imagine that each
vertexvi in V is the center of a sphereSi with some appro-
priate radiusri, which may be different for each vertex. (Let
us momentarily put off the question of how to choose these
radii.) For each segments that meets some other segment
at an angle of less than90◦, let vi be the vertex where they
meet. The algorithm inserts a new vertex at the points∩ Si,
as illustrated. Insert all the new vertices generated this way
into the Delaunay tetrahedralization constructed in Section 4
(using the Bowyer–Watson [1, 28] algorithm, so the mesh
remains Delaunay).

The protecting spheres cut off the ends of some segments.
Each of these “ends” is guaranteed to be strongly Delaunay
because no vertex lies on or inside its diametral sphere (the
smallest sphere that contains the end), except its endpoints.
Therefore, all the ends appear as edges in the updated De-
launay tetrahedralization. The only segments that can pierce
the diametral spheres of the ends are other ends. The second
step does not insert a vertex into any of the ends, so the ends
remain strongly Delaunay.

The second step recovers the segments that are not ends by
recursive bisection. Any segment that is not strongly De-
launay is split in two with a new vertex at its midpoint.
The Delaunay tetrahedralization of the vertices is maintained
throughout, so subsegments that are not strongly Delaunay
can be diagnosed as described in Section 4. When every
subsegment is strongly Delaunay, the PLC is edge-protected
and the algorithm terminates.

This procedure can be used to make a PLC weakly or fully
edge-protected. To obtain full edge protection, the procedure
considers all segments—except edges of the convex hull,
which are always strongly Delaunay. (This means true edges
of the convex hull—an edge that lies in a face of the convex
hull, but not in the boundary of the face, must be considered.
Convex hull edges can be discovered by searching for dihe-
dral angles greater than180◦ on the boundary of the initial

Figure 11: Making a PLC edge-protected. (Here illus-
trated in two dimensions, but the principle is the same
in three.) First, use spheres centered at input vertices
to subdivide segments that meet other segments at an-
gles less than 90◦. Second, bisect any segment that is
not strongly Delaunay. Observe that the second step
does not split the “ends” created by the first step be-
cause no new vertices can appear in their diametral
spheres.

tetrahedralization.) To obtain weak edge protection, the pro-
cedure considers only the grazeable segments, and ignores
the others as if they did not exist. The advantage of weak
edge protection is that fewer new vertices are inserted, but
the incremental facet insertion algorithm of Section 7 can
construct the CDT only of a fully edge-protected PLC. Weak
edge protection suffices for the CDT construction algorithms
discussed in Section 6.

How are the sphere radiiri chosen? The radii should be
as large as possible while accomplishing two goals. First,
if both ends of a segment are clipped, the middle subseg-
ment should not be too short. This goal is accomplished by
choosingri no larger than�i/3, where�i is the length of the
shortest segment that is clipped bySi. Second, the diame-
tral spheres of the ends cannot enclose any vertices, nor any
subsegments that are not ends. This goal is accomplished by
choosingri no larger thanlfs(vi), and no larger than2di/3,
wheredi is the length of the shortest segment adjoiningvi

whoseother end is clipped. (Note thatdi is sometimes less
than �i, because a segment whose far end is clipped and

whose near end is not clipped—because only one end ad-
joins another segment at an angle less than90◦—figures into
di but not�i.) Hence, setri = min{lfs(vi), �i/3, 2di/3}.

The algorithm must explicitly compute the local feature size
at some vertices. The local feature sizelfs(vi) is simply
the distance fromvi to the nearest vertex or segment that
doesn’t intersectvi. A Delaunay tetrahedralization connects
each vertex to its nearest neighbor (via an edge), so the initial
tetrahedralization helps find the nearest vertex quickly. The
nearest segment may be found by checking every segment of
the PLC.

Theorem 2 This algorithm for edge-protecting a PLC cre-
ates no segment shorter than one-quarter the local feature
size of any point in that segment.

Proof: Observe that an ende adjoining vertexvi has a
length of at leastlfs(vi)/3. A well-known property [17, 21]
of the lfs function is that for any two pointsu and v,
lfs(u) ≤ lfs(v) + |uv|. So at any pointu in the ende,
lfs(u) ≤ lfs(vi) + |e| ≤ 4|e|, where|e| is the length ofe. It
follows that for any pointu in any ende, |e| ≥ lfs(u)/4.

Let s be the segment left over after one or both ends of a
segmentt are cut off. For any pointu in s, |s| ≥ |t|/3 ≥
lfs(u)/3.

During the second step, a segments is produced only when
a segment of length2|s| has a vertexv on or inside its di-
ametral sphere, andv does not intersect the original seg-
ment of whichs is a subsegment. For any pointu in s, the
ball of radius2|s| centered atu intersects bothv ands, so
lfs(u) ≤ 2|s|. It follows that for any pointu in any segment
s produced during the second step,|s| ≥ lfs(u)/2. �

The same result applies to every edge of the CDT, except
where two segments meet at an angle less than60◦. Unfortu-
nately, small angles sometimes unavoidably engender short
edges, but the edge lengths are still bounded in terms of the
angles.

Theorem 3 Let T be the CCDT of a PLC X yielded by ap-
plying the edge-protection algorithm described above, then
constructing the CDT of the augmented PLC. Let e be any
edge of T , and let u be any point in e. If the endpoints of e
lie in two different segments of X that meet at an angle of
φ < 60◦, then |e| ≥ lfs(u) sin(φ/2)/2. For any other edge,
|e| ≥ lfs(u)/4.

Proof: If e is a subsegment, the result follows from Theo-
rem 2. Otherwise, letw andx be the endpoints ofe. If w
andx lie on nonintersecting features (vertices or segments)
of X, thenlfs(u) ≤ |e| by the definition of local feature size.

The only other case is wherew andx lie in two segments of
X that meet at some vertexv at some angleφ. The triangle
	vwx has side lengthsb = |wv|, c = |xv|, and|e|. Assume

without loss of generality thatb ≤ c. The pointu lies in e,
so |uv| ≤ c andlfs(u) ≤ lfs(v) + |uv| ≤ 3b + c.

By the law of cosines,|e|2 = b2 +c2−2bc cos φ. If b is held
fixed, calculus shows that the ratio|e|/(3b+c) is minimized
for a value ofc that is (for anyφ) less thanb. But by as-
sumption,c ≥ b, so the worst (smallest) ratio is attained with
c = b. For this case,	vwx is isosceles and basic trigonom-
etry shows that|e| = 2b sin(φ/2). Therefore,|e|/lfs(u) ≥
|e|/(3b + c) ≥ 2b sin(φ/2)/(4b) = sin(φ/2)/2. �

6 Constructing CDTs

The first step of constructing the CDT of a PLC is to
construct the two-dimensional CDTs (triangulations) of all
the facets of the PLC. This can be done using Chew’s
O(n log n) algorithm [2] (wheren is the number of ver-
tices in a facet), by using a two-dimensional version of the
gift-wrapping algorithm described below, or by constructing
the Delaunay triangulation of the vertices of a facet, then in-
serting the segments one by one. Call each triangle of each
facet CDT aconstraining triangle, because these triangles
are constrained to appear as faces of the tetrahedralization.

There are two known algorithms that can construct the CDT
of any PLCX that has a CDT, including any weakly edge-
protected PLC—if no five vertices ofX are cospherical. (If
the latter condition is not satisfied, see Section 9.) These are
naı̈ve gift wrapping, and a sweep algorithm [23]. Na¨ıve gift
wrapping is easier to implement, but the more complicated
sweep algorithm is faster. The running time of gift wrapping
isO(nvnfns), wherenv is the number of vertices,nf is the
number of constraining triangles, andns is the number of
tetrahedra in the CDT. For large PLCs, this is too slow. The
sweep algorithm runs inO(nvns) time, but in practice the
running time is likely to beO(n2

v +ns log nv) or better in all
but the most pathological cases. Hence, the sweep algorithm
is fast enough for most circumstances.

Nevertheless, the gift-wrapping algorithm is usually fast
enough to be used for incremental facet insertion (described
in the next section), so it is described here. (Space pre-
vents my describing the sweep algorithm here.) It is a varia-
tion on the gift-wrapping algorithms for constructing convex
hulls [26] and ordinary Delaunay triangulations [27, 7].

Gift-wrapping begins by choosing one constraining triangle,
which serves as aseed upon which the constrained Delaunay
tetrahedra crystallize one by one. Both sides of this triangle,
plus each face of every crystallized tetrahedron, is used as a
base from which to search for the vertex that serves as the
apex of an adjacent tetrahedron.

Gift-wrapping is based on a straightforward procedure for
“growing” a tetrahedron from a triangle, illustrated in Fig-
ure 12. Letf be either a constraining triangle or a face of
a constrained Delaunay tetrahedron. Assume without loss of
generality thatf is oriented horizontally, and the constrained
Delaunay tetrahedron immediately abovef is sought. Sup-
pose that at least one vertex ofX lies abovef . Let S be a

S

f

O t

vv

Figure 12: A sphere S that circumscribes f , expanding
in search of a vertex v to form a new tetrahedron t =
conv(f ∪ v).

sphere that can shrink or expand, but always circumscribes
f . Suppose the centerO of S is initially infinitely far below
f , so that the “inside” ofS is the open halfspace belowf ;
thenO moves up until the portion ofS abovef touches the
first vertexv that is visible from some point (any fixed point
will do) in the interior off .

Let t be the tetrahedronconv(f ∪ v). If a CDT of X exists,
thent is constrained Delaunay. If no eligible vertex can be
found, or if t is not constrained Delaunay, thenX has no
CDT.

The gift-wrapping algorithm is as follows. Letf be the seed
triangle. Say that both sides off areunfinished. Thereafter,
say that a triangular face of the growing tetrahedralization is
unfinished if the algorithm has not yet identified the second
constrained Delaunay tetrahedron that shares the face. To
finish a face is to construct the second tetrahedron, or to de-
termine that the face adjoins the exterior domain and there is
no second tetrahedron.

The gift-wrapping algorithm maintains a dictionary (i.e. a
hash table) of unfinished faces, which initially contains both
sides off . Repeat the following steps: remove an arbitrary
unfinished facef from the dictionary and search for a vertex
v that finishesf . If no vertex is abovef , thenf lies on the
boundary of the convex hull. Iff does not lie on the con-
vex hull boundary and does not bear a notation that indicates
that it adjoins the exterior domain, findv through the growth
procedure and addt = conv(f ∪ v) to the growing tetra-
hedralization. Check each face oft, exceptf , against the
dictionary. If a face is already present in the dictionary, then
the face is now finished, so remove it from the dictionary.
Otherwise, the face is new and has one unfinished side, so
insert it into the dictionary.

Finishing a single face takesO(nvnf) time, because it may
be necessary to test the visibility of each vertex from the face,
which is done by testing each vertex against every constrain-
ing triangle inX. (Clearly, it is the visibility testing that
makes gift wrapping CDTs so slow.) Gift wrapping thus runs
in O(nvnfns) time. This leaves much room for improve-
ment, which can be realized by using the sweep algorithm
instead. For practical purposes it seems likely that CDT con-

struction by gift wrapping can be sped up by using it in con-
cert with incremental facet insertion.

7 Incremental Facet Insertion

Because the na¨ıve gift wrapping algorithm is slow, and the
faster sweep algorithm takes a good deal of effort to im-
plement and is difficult to make robust, I suggest a third
CDT construction algorithm. The algorithm begins with a
Delaunay tetrahedralization of the vertices of a fully edge-
protected PLC—recall that we have constructed both an
edge-protected PLC and its tetrahedralization in Section 5—
and incrementally recovers the missing facets one by one.

The incremental facet insertion algorithm seems likely to
strike the best trade-off between ease of implementation and
speed in many practical applications. Another advantage of
the algorithm is that there is no need to precompute the two-
dimensional CDTs of the facets; these are produced automat-
ically. Hence, this may be the easiest option to implement.

The disadvantage of incremental facet insertion is that the al-
gorithm does not work on weakly edge-protected PLCs; they
must be fully edge-protected. A facet can only be inserted
if all the segments that bound it already appear as edges in
the tetrahedralization (including segments that are not graze-
able). This means that more new vertices must be inserted
(by the algorithm of Section 5) to construct a CCDT than for
the gift-wrapping or sweep algorithms. However, because
many of the extra vertices might be inserted later to achieve
high-quality elements, the difference is usually small in the
final mesh.

The best way to reason about incremental CDT operations,
such as inserting or deleting facets or vertices, is to imagine
that both the underlying PLC and the CDT are incrementally
modified at the same time. If the underlying PLC remains
always edge-protected after each operation, then a CDT ex-
ists after each step as well, and the incremental approach is
viable.

Imagine a PLCX whose CDTT has been constructed. Let
f be a facet we would like to insert into the PLC (and recover
in the tetrahedralization). The segments that boundf must
already be present inX, and they must appear as edges inT .
Let Xf = X ∪ {f}. If X is weakly edge-protected, then
so isXf , becauseXf has exactly the same segments and
vertices asX. (Facets have no effect on whether a segment
is strongly Delaunay.) Therefore,Xf also has a CDTT f .
The goal of a facet insertion algorithm is to convertT into
T f . Such an algorithm is described shortly.

Incremental facet insertion takes advantage of this fact to
construct a CDT from an ordinary Delaunay tetrahedraliza-
tion. To find the CDT of an edge-protected PLCY , let X be
a PLC containing all the vertices and segments ofY , but no
facets. (Note that there is no need for the algorithm to actu-
ally storeX; X is just a mathematical construction for our
understanding.) LetT be the Delaunay tetrahedralization of
the vertices inX. BecauseY is fully edge-protected, every

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

Figure 13: Two- and three-dimensional examples of
inserting a facet into a CDT.

segment inX is strongly Delaunay, soT is the CDT ofX.

Next, insert the facets ofY into X, one by one. With each
facet insertion, updateT so it is still the CDT ofX. The
key observation is that becauseX always remains edge-
protected, this update is always possible. When all the facets
have been inserted,X = Y andT is the CDT ofY —or
would be ifT didn’t cover the entire convex hull of the tri-
angulation domain. The final step is to remove fromT any
tetrahedra that do not lie in the triangulation domain.

Let us consider an algorithm for recovering a facetf . How
doesT transform intoT f? First, find all the tetrahedra in
T that intersect the relative interior off . It may be that
f is already represented as a union of triangular faces, in
which case there is nothing to do. Otherwise, the next step is
to delete fromT each tetrahedron whose interior intersects
f , as Figure 13 illustrates. (Tetrahedra that intersectf only
on their boundaries stay put.) It is easy to verify that every
other tetrahedron is still constrained Delaunay, and so must
be present in the new CDT.

Next, use the na¨ıve gift-wrapping algorithm to retriangulate
the polygonal cavities created on each side off . Be fore-
warned that there may be more than one polygonal cavity on
each side off , because some triangular faces of the tetrahe-
dralization might already conform tof beforef is inserted.

For most domains, the polygonal cavities will be bounded
by a small number of triangular faces, so the poor time com-
plexity of naı̈ve gift wrapping is unlikely to be a burden. Of
course, it is possible to design examples where the cavities
have many faces, so the incremental facet insertion algorithm
may be even slower than gift wrapping the whole PLC from
scratch. Such examples are likely to be the exception in prac-
tice.

To retriangulate a cavity, letZ be a PLC consisting only of
the triangular faces that bound one cavity, plus their edges
and vertices. Happily, the na¨ıve gift-wrapping algorithm
works correctly even if some or all of the facets on the con-
vex hull of the region being triangulated are left unspecified.
So when a polygonal cavity is triangulated,f may be omit-
ted from the description of the cavity. Therefore, there is
no need to precompute the two-dimensional CDT off be-
fore inserting it. When the cavity is tetrahedralized, the two-

deletion

insertion

t

v

PG

t

T’T

Figure 14: Inserting or deleting a vertex v. This ex-
ample is two-dimensional for clarity, but the same prin-
ciples operate in three dimensions. Bold edges are
segments. The polygon P is the union of the trian-
gles adjoining v. Triangles outside P are constrained
Delaunay in both triangulations. The graph G is used
as a search structure to identify P when v is inserted.
Note that although v lies inside the circumcircle of t, t
is not deleted when v is inserted because G does not
connect it to any triangle in P .

dimensional CDT off appears automatically on the surface
of the cavity tetrahedralization.

8 Vertex Insertion and Deletion

Once a domain has been tetrahedralized with constrained
Delaunay elements (collectively forming a CCDT of the in-
put PLC), some of these elements will be of poor qual-
ity and need to be improved. Delaunay meshing algo-
rithms [6, 11, 21, 22, 29] insert additional vertices to replace
bad elements with better ones, while maintaining the Delau-
nay (or “almost Delaunay”) property throughout the inser-
tions. Fortunately, inserting a vertex into, or deleting a vertex
from, a constrained Delaunay tetrahedralization is almost as
easy as in an ordinary Delaunay tetrahedralization.

Consider vertex deletion first. Suppose we have the CDT
T v of a PLCXv . Let X be the PLC obtained by deleting a
vertexv from Xv. (Assume thatv is not the endpoint of any
segment, because endpoints cannot be deleted.) We wish to
transformT v into the CDTT of X.

The first step is to delete every tetrahedron that hasv for a
vertex. LetP be the union of these tetrahedra. As Figure 14
shows,P is a star-shaped polyhedron whose points are all
visible fromv. No other tetrahedron is deleted.

The polytope is retriangulated by a simple sweep algorithm
for constructing CDTs of star-shaped polyhedra, described
elsewhere [23]. The algorithm, based on a similar algorithm
of Devillers [5], runs inO(ns log nv) time, wherens is the

number of tetrahedra in the new tetrahedralization ofP , and
nv is the number of vertices inP .

There is a danger though. What ifP has no CDT? PerhapsP
is Schönhardt’s polyhedron, or another difficult polyhedron.
Sometimes vertices cannot be deleted, and it is the respon-
sibility of the application program to ensure that a vertex is
safe to delete before deleting it.

The best way to accomplish that is to ensure that the under-
lying PLC always remains weakly edge-protected after each
vertex deletion or insertion. A simple guideline is that ifXv

is weakly edge-protected, then so long asv does not lie in
a segment,X is also weakly edge-protected, and thus has a
CDT. However, ifv is deleted from the interior of a segment,
the deletion merges two segments into one. The deletion is
safe only if the new, larger segment is known to be strongly
Delaunay. For example, letX be the PLC in Figure 9, let
v be a vertex in the middle of the central segment, and let
Xv = X ∪ {v}. Xv has a CDTT v from whichv cannot be
safely deleted.

Vertex insertion is easier to implement than vertex deletion,
because no sweep algorithm is needed. The insertion algo-
rithm is just a slight variation of the Bowyer–Watson algo-
rithm for vertex insertion in Delaunay triangulations [1, 28].

Vertex insertion is the reverse of vertex deletion. Given a
CDT T of a PLCX and a vertexv, the goal is to construct
the CDTT v of Xv = X ∪ {v}, if it exists. The first task is
to identify P , the polyhedron to be retriangulated. Unfortu-
nately, while it is easy to determineP from T v, it is harder
to determineP from T .

First, find the tetrahedra that containv. (Typically there is
just one, but there are more ifv lies on a face or edge ofT .)
These tetrahedra are no longer constrained Delaunay, so they
must be deleted.P is connected, so the other tetrahedra inP
can be found by a depth-first search from the tetrahedra that
containv. The search does not walk through constraining
triangles, and it backtracks whenever it encounters a tetra-
hedron whose circumsphere does not enclosev. The search
finds every simplex that is no longer constrained Delaunay.

On what graph is the search performed? LetG be a graph
with one node for each tetrahedron. An edge connects two
nodes if the corresponding tetrahedra share a triangular face
that isnot a constraining triangle.

After all the tetrahedra inP are identified and deleted,P is
retetrahedralized to yieldT v. The new tetrahedralization is
easy to generate: for each triangular faces in the boundary
of P , construct a new tetrahedronconv(s∪ v), as Figure 14
illustrates. The total running time isO(ns), wherens is
the number of old tetrahedra deleted. (The number of new
tetrahedra created is never larger than2ns + 2, though it
could be asymptotically smaller.) This running time does not
include the time needed to find a tetrahedron that containsv.

Like vertex deletion, vertex insertion is not always safe. A
new vertex may cause a segment to no longer be strongly De-
launay, and knock it out of the tetrahedralization. A Delau-

nay mesh generation program should test for this possibility,
and back out when vertex insertion cannot succeed.

A three-dimensional Delaunay refinement algorithm I de-
scribe elsewhere [21] handles this difficulty by considering
the diametral sphere of each segment (the smallest sphere
that contains the segment) to be a protected region. Any ef-
fort to insert a vertex on or inside the sphere is thwarted;
instead, the segment is split at its center, and the two re-
sulting subsegments have smaller diametral spheres. Thus,
every subsegment is kept strongly Delaunay at all times, and
the mathematical integrity of the CDT is never broached.

Unfortunately, there is one circumstance where this strategy
does not work. A vertex inserted on one grazeable segment
might knock a second grazeable segment out of the mesh,
and a vertex on the second segment might knock the first
one out. This is a chicken-and-egg problem where both
vertices—perhaps many vertices—must be inserted simul-
taneously to keep the mesh weakly edge-protected. Simulta-
neous vertex insertions can be performed by identifying and
removing all the tetrahedra that would be removed by indi-
vidual vertex insertions, then gift wrapping the cavities.

9 Degeneracies and Robustness

Unfortunately, CDT construction algorithms are even more
sensitive to numerical error than most geometric algorithms.
Furthermore, PLCs in which five or more vertices lie on a
common sphere can cause gift wrapping to fail if degenera-
cies are not handled carefully.

Therefore, I recommend that exact arithmetic [19] be used
to implement the numerical predicates (i.e. orientation and
insphere tests), and that all the algorithms use a modified
insphere test that employs a simple symbolic perturbation
technique [9, 23] to simulate the circumstance where no five
vertices are cospherical. Symbolic perturbation ensures that
the gift-wrapping and sweep algorithms correctly produce a
CDT of any weakly-edge protected PLC, and simplifies the
test for strongly Delaunay segments (as discussed in Sec-
tion 4).

References

[1] Adrian Bowyer. Computing Dirichlet Tessellations.
Computer Journal24(2):162–166, 1981.

[2] L. Paul Chew. Constrained Delaunay Triangulations.
Algorithmica4(1):97–108, 1989.

[3] Kenneth L. Clarkson and Peter W. Shor.Applica-
tions of Random Sampling in Computational Geome-
try, II. Discrete & Computational Geometry4(1):387–
421, 1989.

[4] David Cohen-Steiner,́Eric Colin de Verdière, and Ma-
riette Yvinec.Conforming Delaunay Triangulations in
3D. Proceedings of the Eighteenth Annual Symposium
on Computational Geometry (Barcelona, Spain), pages
199–208, June 2002.

[5] Olivier Devillers. On Deletion in Delaunay Triangula-
tions. Proceedings of the Fifteenth Annual Symposium
on Computational Geometry, pages 181–188. Associa-
tion for Computing Machinery, June 1999.

[6] Tamal Krishna Dey, Chanderjit L. Bajaj, and Kokichi
Sugihara. On Good Triangulations in Three Dimen-
sions. International Journal of Computational Geome-
try & Applications2(1):75–95, 1992.

[7] Rex A. Dwyer. Higher-Dimensional Voronoi Dia-
grams in Linear Expected Time. Discrete & Compu-
tational Geometry6(4):343–367, 1991.

[8] Herbert Edelsbrunner, Xiang-Yang Li, Gary Miller,
Andreas Stathopoulos, Dafna Talmor, Shang-Hua
Teng, Alper Ungor, and Noel Walkington.Smoothing
and Cleaning Up Slivers. Proceedings of the 32nd An-
nual Symposium on the Theory of Computing (Port-
land, Oregon), pages 273–278. Association for Com-
puting Machinery, May 2000.

[9] Herbert Edelsbrunner and Ernst Peter M¨ucke. Simula-
tion of Simplicity: A Technique to Cope with Degener-
ate Cases in Geometric Algorithms. ACM Transactions
on Graphics9(1):66–104, 1990.

[10] Herbert Edelsbrunner and Tiow Seng Tan.An Up-
per Bound for Conforming Delaunay Triangulations.
Discrete & Computational Geometry10(2):197–213,
1993.

[11] Paul-Louis George and Houman Borouchaki.Delau-
nay Triangulation and Meshing: Application to Finite
Elements. Hermès, Paris, 1998.

[12] Carol Hazlewood.Approximating Constrained Tetra-
hedrizations. Computer Aided Geometric Design
10:67–87, 1993.

[13] Der-Tsai Lee and A. K. Lin. Generalized Delaunay
Triangulations for Planar Graphs. Discrete & Compu-
tational Geometry1:201–217, 1986.

[14] Gary L. Miller, Dafna Talmor, Shang-Hua Teng, and
Noel Walkington. A Delaunay Based Numerical
Method for Three Dimensions: Generation, Formula-
tion, and Partition. Proceedings of the Twenty-Seventh
Annual ACM Symposium on the Theory of Computing
(Las Vegas, Nevada), pages 683–692, May 1995.

[15] Gary L. Miller, Dafna Talmor, Shang-Hua Teng,
Noel Walkington, and Han Wang.Control Volume
Meshes using Sphere Packing: Generation, Refine-
ment and Coarsening. Fifth International Meshing
Roundtable (Pittsburgh, Pennsylvania), pages 47–61,
October 1996.

[16] Michael Murphy, David M. Mount, and Carl W. Gable.
A Point-Placement Strategy for Conforming Delaunay
Tetrahedralization. Proceedings of the Eleventh An-
nual Symposium on Discrete Algorithms, pages 67–74.
Association for Computing Machinery, January 2000.

[17] Jim Ruppert. A Delaunay Refinement Algorithm for
Quality 2-Dimensional Mesh Generation. Journal of
Algorithms18(3):548–585, May 1995.

[18] E. Schönhardt.Über die Zerlegung von Dreieckspoly-
edern in Tetraeder. Mathematische Annalen98:309–
312, 1928.

[19] Jonathan Richard Shewchuk. Adaptive Precision
Floating-Point Arithmetic and Fast Robust Geomet-
ric Predicates. Discrete & Computational Geometry
18(3):305–363, October 1997.

[20] . A Condition Guaranteeing the Existence of
Higher-Dimensional Constrained Delaunay Triangu-
lations. Proceedings of the Fourteenth Annual Sympo-
sium on Computational Geometry (Minneapolis, Min-
nesota), pages 76–85. Association for Computing Ma-
chinery, June 1998.

[21] . Tetrahedral Mesh Generation by Delaunay
Refinement. Proceedings of the Fourteenth Annual
Symposium on Computational Geometry (Minneapo-
lis, Minnesota), pages 86–95. Association for Comput-
ing Machinery, June 1998.

[22] . Mesh Generation for Domains with Small An-
gles. Proceedings of the Sixteenth Annual Symposium
on Computational Geometry (Hong Kong), pages 1–
10. Association for Computing Machinery, June 2000.

[23] . Sweep Algorithms for Constructing Higher-
Dimensional Constrained Delaunay Triangulations.
Proceedings of the Sixteenth Annual Symposium on
Computational Geometry (Hong Kong), pages 350–
359. Association for Computing Machinery, June
2000.

[24] . What is a Good Linear Element? Interpola-
tion, Conditioning, and Quality Measures. This pro-
ceedings, 2002.

[25] Robin Sibson.A Brief Description of Natural Neighbor
Interpolation. Interpreting Multivariate Data (V. Bar-
nett, editor), pages 22–36. John Wiley, 1981.

[26] G. Swart. Finding the Convex Hull Facet by Facet.
Journal of Algorithms6:17–48, 1985.

[27] M. Tanemura, T. Ogawa, and N. Ogita.A New Al-
gorithm for Three-Dimensional Voronoi Tessellation.
Journal of Computational Physics51:191–207, 1983.

[28] David F. Watson.Computing the n-dimensional Delau-
nay Tessellation with Application to Voronoi Polytopes.
Computer Journal24(2):167–172, 1981.

[29] Nigel P. Weatherill and O. Hassan.Efficient Three-
Dimensional Grid Generation using the Delaunay Tri-
angulation. Proceedings of the First European Com-
putational Fluid Dynamics Conference (Brussels, Bel-
gium) (Ch. Hirsch, J. P´eriaux, and W. Kordulla, edi-
tors), pages 961–968, September 1992.

